Cancer Pharmacogenomics Development, Science, Translation

Richard Weinshilboum, M.D.
Dasburg Professor of Cancer Genomics Research
Department of Molecular Pharmacology and Experimental Therapeutics
Mayo Clinic-Mayo Medical School
Rochester, Minnesota USA
Cancer Pharmacogenomics

- Introduction
- Present
- Promise
- Conclusions
Pharmacogenetics-Pharmacogenomics

Critical component of “personalized” or “individualized” medicine
Clinical Goals

• Avoid adverse drug reactions
• Maximize drug efficacy
• Select responsive patients
Pharmacogenetics-Pharmacogenomics

Scientific Goals

• Link variation in genotype to variation in phenotype

• Determine mechanisms responsible for that link

• Translate the link into enhanced understanding, treatment and prevention of disease
Cancer Pharmacogenomics

- Introduction
- Present
- Promise
- Conclusions
FDA Hearings
Pharmacogenetics and Drug Labeling

• Thiopurines – TPMT*
• Irinotecan – UGT1A1*
• Warfarin – CYP2C9 and VKORC1*
• Tamoxifen – CYP2D6*

*germline polymorphisms
Childhood ALL Survival
St. Jude Experience

Pui and Evans, *NEJM*. 2006;354:166-78. Copyright © 2006 Massachusetts Medical Society. All rights reserved.
TPMT
Genetic Polymorphism
Clinical Consequences

• Low TPMT
 — Increased thiopurine toxicity
 — Increased risk for secondary neoplasm

• High TPMT
 — Decreased therapeutic effect
Selected Human TPMT Alleles

TPMT*1 (wild type)

TPMT*3A

TPMT*3B

TPMT*3C

Pharmacogenetics-Pharmacogenomics

FDA Hearings
Pharmacogenetics and Drug Labeling

- Thiopurines – *TPMT*
- Irinotecan – *UGT1A1*
- Warfarin – *CYP2C9* and *VKORC1*
- Tamoxifen – *CYP2D6*
Tamoxifen Biotransformation

Reprinted by permission of the Oxford University Press.
CYP2D6 Pharmacogenetics

Debrisoquine/4-Hydroxydebrisoquine Metabolic Ratio

Number of Subjects

0 10 20 30 40 50 60 70 80 90 100

0.01 0.1 1 10 100

UMs EMs PMs

cutoff

1011 Subjects

Tamoxifen Pharmacogenetics

Breast Cancer (190 Patients)

Relapse–Free Survival, %

Disease–Free Survival

Goetz et al., Breast Cancer Res. Treat. 2007; 101:113-121.
Reprinted by permission of Springer Science+Business Media.
Tamoxifen Pharmacogenetics

Schroth et al., JCO. 2007; 25:5187-93. Reprinted with permission. © 2010 American Society of Clinical Oncology. All rights reserved.
Pharmacogenomics

Evolution

• One gene, one or a few SNPs
• One gene, intragenic haplotypes
• PK and PD pathways and haplotypes
• Genome-wide association studies
Cancer Pharmacogenomics

- Introduction
- Present
- Promise
- Conclusions
Pharmacogenomic Genome-wide Model System

“Human Variation Panel”
Cell Lines

• 96 CA, 96 AA, 96 HCA
• Illumina genome-wide SNPs
• Affymetrix 6.0 genome-wide SNPs
• Affymetrix U133 2.0 Plus expression data
• Affymetrix exon array data

Liewei Wang, M.D., Ph.D.
Cytidine Analogues

Ara-C

Gemcitabine
Gemcitabine "Pathway"

Deamination

SLC28A1, A2 and A3

SLC29A1 and A2

CDA

NT-5C

DCK

UMP-CMPK

Gemcitabine

RRM1

RRM2

RRM2B

NDPs

dNDPs

dNTPs

dNTPs

DNA

Nucleus
Gemcitabine-AraC
IC50 – Expression Association

Gemcitabine
IC50 vs. expression array

AraC
IC50 vs. expression array

“Biased” – pathway-based

“Unbiased” – genome-wide

Functional validation

NT5C3, a “pathway” gene, and *FKBP5*, a “non-pathway” gene encoding a 51 kDa immunophosphitin, were selected for functional study based on p values and QRT-PCR verification.
The Therapeutic Revolution

Goodman and Gilman’s
“The Pharmacological Basis of Therapeutics”
Functional Characterization of FKBP5
Gemcitabine

FKBP5 Functional Characterization in Caspase-3/7 Activity

Signal for Apoptotic Cells

- **Negative-siRNA**
- **FKBP5-siRNA**

Graph 1:
- **SU86**
- **Gemcitabine Concentration (µM)**
- **Signal for Apoptotic Cells**

Graph 2:
- **MD-MB-231**
- **Gemcitabine Concentration (µM)**

Reprinted with permission from Li et al. *Cancer Res.* 2008; 68:7050-7058. (Figure 4)
Cancer Pharmacogenomics

• Introduction
• Present
• Promise
• Conclusions
Pharmacogenomics
Genomic Era

Developments

• Next Gen DNA Sequencing
• 1000 Genomes Project
• ENCODE
• RNA-seq
• DTC Genomics
Pharmacogenomics

Clinical Goals

• Avoid adverse drug reactions
• Maximize drug efficacy
• Select responsive patients
Cancer Pharmacogenomics

Challenges

• Germline and/or somatic genome
• Clinical trials and/or population studies
• Translational and/or mechanistic studies
• Funding to incorporate rapidly changing, expensive technologies
• Collaboration and replication
Acknowledgements

• Mayo PGRN – GM61388
• Indiana PGRN – GM061373
• Mayo Breast Cancer SPORE – CA166201
• Mayo Pancreatic Cancer SPORE – CA102701
• K22 CA130828 and R01 CA138461
• Breast Cancer Intergroup of North America – NCIC-CTG, NCCTG, ECOG, SWOG, CALGB
• RIKEN Yokohama Institute Center for Genomic Medicine (CGM)
NIH Funding Institutes

NIGMS
NHLBI
NIDA
NCI
NIEHS
NIMH
NHGRI
NLM
ORWH

University of California, San Francisco
University of Chicago
St. Jude Children's Research Hospital
Mayo Clinic
Vanderbilt University
Washington University
Children's Hospital of Oakland Research Institute
Stanford University
University of Florida
University of Maryland
Indiana University
Brigham and Women's Hospital

Primary Investigator Site
Co-Investigator Site